

Computer System Architecture
UNIT I

Number System

The Number Systems used in computers are:

• Binary number system

• Octal number system

• Decimal number system

• Hexadecimal number system

Binary number system

• It has only two digits '0' and '1' so its base is 2.

• Accordingly, In this number system, there are only two types of
electronic pulses; absence of electronic pulse which represents '0'and

presence of electronic pulse which represents '1'.

• Each digit is called a bit.

• A group of four bits (1101) is called a nibble and group of eight bits

(11001010) is called a byte. The position of each digit in a binary number

represents a specific power of the base (2) of the number system.

Octal number system

• It has eight digits (0, 1, 2, 3, 4, 5, 6, 7) so its base is 8. Each digit in an

octal number represents a specific power of its base (8).

• As there are only eight digits, three bits (23=8) of binary number system

can convert any octal number into binary number.

• This number system is also used to shorten long binary numbers. The

three binary digits can be represented with a single octal digit.

Decimal number system

• This number system has ten digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) so its base is

10.

• In this number system, the maximum value of a digit is 9 and the

minimum value of a digit is 0.

• The position of each digit in decimal number represents a specific power

of the base (10) of the number system.

• This number system is widely used in our day-to-day life. It can

represent any numeric value.

Hexadecimal number system

• This number system has 16 digits that ranges from 0 to 9 and A to F. So,

its base is 16. The A to F alphabets represent 10 to 15 decimal numbers.

• The position of each digit in a hexadecimal number represents a specific

power of base (16) of the number system.

• As there are only sixteen digits, four bits (24=16) of binary number

system can convert any hexadecimal number into binary number.

• It is also known as alphanumeric number system as it uses both numeric

digits and alphabets.

Binary Octal Decimal Hexadecimal

0 0 0 0
1 1 1 1

10 2 2 2
11 3 3 3

100 4 4 4
101 5 5 5
110 6 6 6
111 7 7 7

1000 10 8 8
1001 11 9 9
1010 12 10 A
1011 13 11 B
1100 14 12 C
1101 15 13 D
1110 16 14 E
1111 17 15 F

10000 20 16 10
10001 21 17 11
10010 22 10 12
10011 23 19 13
10100 24 20 14
10101 25 21 15
10110 26 22 16
10111 27 23 17
11000 30 24 18
11001 31 25 19
11010 32 26 1A

11011 33 27 1B
11100 34 28 1C
11101 35 29 1D
11110 36 30 1E

Fixed Point Representation

• Fixed-point representation has a radix point known as decimal point.

• Fixed-point numbers having decimal points at the right end of the

number are treated as integers and the fixed-point numbers having

decimal points at the left end of the number are treated as fractions.

• In this method, the decimal point position is settled because the number

saved in the memory is considered as an integer or as a fraction.

• The binary numbers that are unsigned are continually considered as

positive integers and are defined as 0s in the MSB.

• The binary numbers that are registered contrast for negative numbers

and are defined as 1s in the MSB.

The magnitude of the signed binary numbers can be described using three

methods are as follows −

1. Sign and Magnitude Representation

• In this method, the leftmost bit in the number is used for denoting the

sign

• 0 denotes a positive integer, and 1 denotes a negative integer.

• The remaining bits in the number provide the magnitude of the number.

• The range of values for the sign and magnitude representation is from

-127 to 127.

Example: (-2410) is defined as 10011000

Note:- The magnitude for both positive and negative values is equal, but they

alter only with their signs.

2. Signed 1’s Complement Representation

• In this representation, a negative value is received by taking the 1’s

complement of the equivalent positive number.

• It can add a signed 1’s complement method creates end carry during

arithmetic operation that cannot be rejected.

• The range of values for the signed 1’s complement representation is

from -127 to 128.

Example:

(29)10 = (00011101)2 = 0000111011’s complement for positive value

-(29)10 = -(00011101)2 = 111100010 1’s complement for negative value

3. Signed 2’s Complement Representation

• In signed 2’s complement representation, the 2’s complement of a

number is discovered by first creating the 1’s complement of that

number, then incrementing the result by 1.

• The range of values for the signed 2’s complement representation is

from -128 to 127.

Example:

(29)10= (00011100)2 = (000011100)2’s1’s complement for positive value

-(29)10 = -(00011100)2 = (11110010)2’s1’s complement for negative value

1's Complement

• The binary numbers can be easily converted into the 1's complement

with the help of a simple algorithm.

• According to this algorithm, if we toggle or invert all bits of a binary

number, the generated binary number will become the 1's complement

of that binary number. That means we have to transform 1 bit into the 0

bit and 0 bit into the 1 bit in the 1's complement.

• N' is used to indicate the 1's complement of a number.

Example:

1. 1's complement of binary number 5 (0101) is binary number 10 (1010)

2. 1's complement of binary number 13 (1101) is binary number 2 (0010)

2's Complement

• The binary numbers can also be easily converted into the 2's

complement with the help of a very simple algorithm.

• According to this algorithm, we can get the 2's complement of a binary

number by first inverting the given number. After that, we have to add 1

into the LSB (least significant bit). That means we have to first perform

1's complement of a number, and then we have to add 1 into that

number to get the 2's complement.

• N* is used to show the 2's complement of a number.

Example:

1. 2's complement of binary number 5 (0101) is binary number 11 (1011)

2. 2's complement of binary number 13 (1101) is binary number 3 (0011)

Difference between 1's Complement and 2's Complement:

Parameters 1's complement
2representation

2's complement
representation

Process of
Generation

We can get the 1's
complement of a given
binary number by toggling
or inverting all bits of that
number.

We can get the 2's
complement of a given
binary number by first
doing 1's complement of
number and then adding 1
into that number.

Example The 1's complement of
binary number 9 (1001) is 6
(0110).

The 2's complement of
binary number 9(1001) will
be got by doing 1's
complement of that
number which is 6 (0110),
and then adding 1 into it,
which means 7 (0111). So
the 2's complement of 9
(1001) is 7 (0111).

Logic Gates
Used

The implementation of 1's
complement is very simple.
For every bit of input, it
basically uses the NOT gate.

For every bit of input, the
2's complement basically
uses the NOT gate and a
full adder.

Number
Representation

If we want to represent the
sign binary number, we can
use the 1's. If we have a
number 0, then it will not
be possible to use it in the
form of ambiguous
representation.

If we want to represent the
sign binary number, we can
also use the 2's. If we have
a number 0, then it will
possible to use it as an
unambiguous
representation of all given
numbers.

K-bits Register If there is a k-bit register,
the 1's complement will use
-(2(k-1) -1) to store the
lowest negative number,

If there is a k-bit register,
the 2's complement will use
-(2(k-1)) to store the lowest
negative number and (2(k-1) -

and (2(k-1) -1) to store the
largest positive number.

1) to store the largest
positive number.

Representation
of 0

There are two ways to
represent the number 0 in
1's complement, i.e., +0 and
-0. The plus 0 will be
represented as 00000000,
which is positive zero (+0) in
an 8-bit register, and for
negative zero (-0), it will be
represented as 11111111 in
an 8-bit register.

There is only one way to
represent the number 0 in
2's complement for both +0
and -0. Both minus 0 or plus
0 can be represented as
0000000 (+0) in an 8-bit
register because if we add 1
to 11111111 (-1), we will
get 00000000 (+0), which is
the same as positive zero.
That's why the number 0 is
always considered as a
positive in the 2's
complement. This is also
the reason we generally use
2's complement.

Sign Extension In the 1's complement, sign
extension is used to convert
the given sign into another
sign for any signed integer.

The working of sign
extension in 2's
complement and in 1's
complement is the same.
Here it also converts a given
sign into another sign for
any signed integer.

Ease of
operation

The 1's complement always
requires the addition of
end-around-carry-bit. That's
why the 1's complement
arithmetic operation is
difficult as compared to the
2's complement arithmetic
operation.

The 2's complement does
not require the addition of
end-around-carry-bit. That's
why the 2's complement
arithmetic operation is
easier as compared to the
1's complement arithmetic
operation.

Arithmetic Operations of Binary Numbers

Binary is a base-2 number system that uses two states 0 and 1 to represent a

number. We can also call it to be a true state and a false state. A binary

number is built the same way as we build the normal decimal number.

Binary arithmetic is an essential part of various digital systems. You can add,

subtract, multiply, and divide binary numbers using various methods. These

operations are much easier than decimal number arithmetic operations

because the binary system has only two digits: 0 and 1.

Binary additions and subtractions are performed as same in decimal additions

and subtractions. When we perform binary additions, there will be two

outputs: Sum (S) and Carry (C).

1. There are four rules for binary addition:

2. There are four rules for binary subtraction:

Borrow 1 is required from the next higher order bit to subtract 1 from 0. So,

the result became 0.

3. There are four rules for binary multiplication:

Multiplication is always 0, whenever at least one input is 0.

4. There are four parts in any division: Dividend, Divisor, quotient, and

remainder.

The result is always not defined, whenever the divisor is 0.

ASCII Codes

• ASCII (American Standard Code for Information Interchange) is the most

common character encoding format for text data in computers and on

the internet.

• In standard ASCII-encoded data, there are unique values for 128

alphabetic, numeric or special additional characters and control codes.

• ASCII encoding is based on character encoding used for telegraph data.

The American National Standards Institute first published it as a

standard for computing in 1963.

• Characters in ASCII encoding include upper- and lowercase letters A

through Z, numerals 0 through 9 and basic punctuation symbols. It also

uses some non-printing control characters that were originally intended

for use with teletype printing terminals.

• In total, there are 256 ASCII characters, and can be broadly divided into

three categories:

➢ ASCII control characters (0-31 and 127)

➢ ASCII printable characters (32-126) (most commonly referred)

➢ Extended ASCII characters (128-255)

Below are the ASCII values of printable characters (33, 126):

Chara

cter

Charac

ter

Name

AS

CII

co

de

Chara

cter

Chara

cter

Name

AS

CII

co

de

Chara

cter

Chara

cter

Name

AS

CII

co

de

!

Exclam
ation

point 33 A

Upperc

ase a 65 a

Lower

case a 97

“

Double

quotati

on 34 B

Upperc

ase b 66 b

Lower

case b 98

Numbe

r sign 35 C

Upperc

ase c 67 c

Lower

case c 99

$

Dollar

sign 36 D

Upperc

ase d 68 d

Lower

case d 100

%

Percent

sign 37 E

Upperc

ase e 69 e

Lower

case e 101

&

ampers

and 38 F

Upperc

ase f 70 f

Lower

case f 102

Chara

cter

Charac

ter

Name

AS

CII

co

de

Chara

cter

Chara

cter

Name

AS

CII

co

de

Chara

cter

Chara

cter

Name

AS

CII

co

de

‘

apostro

phe 39 G

Upperc

ase g 71 g

Lower

case g 103

(

Left

parent

hesis 40 H

Upperc

ase h 72 h

Lower

case h 104

)

Right

parent
hesis 41 I

Upperc
ase i 73 i

Lower
case i 105

* asterisk 42 J
Upperc
ase j 74 j

Lower
case j 106

+
Plus
sign 43 K

Upperc
ase k 75 k

Lower
case k 107

, comma 44 L
Upperc
ase l 76 l

Lower
case l 108

– hyphen 45 M

Upperc

ase m 77 m

Lower

case m 109

. period 46 N

Upperc

ase n 78 n

Lower

case n 110

/ slash 47 O

Upperc

ase o 79 o

Lower

case o 111

Chara

cter

Charac

ter

Name

AS

CII

co

de

Chara

cter

Chara

cter

Name

AS

CII

co

de

Chara

cter

Chara

cter

Name

AS

CII

co

de

0 zero 48 P

Upperc

ase p 80 p

Lower

case p 112

1 one 49 Q

Upperc

ase q 81 q

Lower

case q 113

2 two 50 R

Upperc

ase r 82 r

Lower

case r 114

3 three 51 S

upperc

ases 83 s

Lower

case s 115

4 four 52 T
Upperc
ase t 84 t

Lower
case t 116

5 five 53 U
Upperc
ase u 85 u

Lower
case u 117

6 six 54 V
Upperc
ase v 86 v

Lower
case v 118

7 seven 55 W
Upperc
ase w 87 w

Lower
case w 119

8 eight 56 X

Upperc

ase x 88 x

Lower

case x 120

9 nine 57 Y

Upperc

ase y 89 y

Lower

case y 121

Chara

cter

Charac

ter

Name

AS

CII

co

de

Chara

cter

Chara

cter

Name

AS

CII

co

de

Chara

cter

Chara

cter

Name

AS

CII

co

de

: colon 58 Z

Upperc

ase z 90 z

Lower

case z 122

;
semi-
colon 59 [

Left

square

bracke
t 91 {

Left

curly
brace 123

<

Less-
than

sign 60 \

backsla

sh 92 |

Vertica

l bar 124

=

Equals

sign 61]

Right

square
bracke

t 93 }

Right
curly

brace 125

>

Greater

-than

sign 62 ^ caret 94 ~ tilde 126

?

Questio

n mark 63 _

unders

core 95

@ At sign 64 `

Grave

accent 96

EBCDIC codes

• Extended binary coded decimal interchange code (EBCDIC) is an 8-bit

binary code for numeric and alphanumeric characters.

• It was developed and used by IBM. It is a coding representation in which

symbols, letters and numbers are presented in binary language.

BCD or Binary Coded Decimal

• Binary Coded Decimal, or BCD, is another process for converting decimal

numbers into their binary equivalents.

• It is a form of binary encoding where each digit in a decimal number is

represented in the form of bits.

• This encoding can be done in either 4-bit or 8-bit (usually 4-bit is

preferred).

• It is a fast and efficient system that converts the decimal numbers into

binary numbers as compared to the existing binary system.

• These are generally used in digital displays where the manipulation of

data is quite a task.

• Thus BCD plays an important role here because the manipulation is done

treating each digit as a separate single sub-circuit.

• The BCD equivalent of a decimal number is written by replacing each

decimal digit in the integer and fractional parts with its 4-bit binary

equivalent.

• The BCD code is more precisely known as 8421 BCD code , with 8,4,2

and 1 representing the weights of different bits in the four-bit groups,

Starting from MSB and proceeding towards LSB. This feature makes it a

weighted code , which means that each bit in the 4-bit group

representing a given decimal digit has an assigned weight.

DECIMAL
NUMBER

BCD DECIMAL
NUMBER

BCD

0 0000 8 1000
1 0001 9 1001
2 0010 10 0001 0000
3 0011 11 0001 0001
4 0100 12 0001 0010
5 0101 13 0001 0011

6 0110 14 0001 0100
7 0111 15 0001 0101
16 0001 0110 21 0010 0001
17 0001 0111 22 0010 0010
18 0001 1000 23 0010 0011
19 0001 1001 24 0010 0100
20 0010 0000 25 0010 0101

In the BCD numbering system, the given decimal number is segregated into

chunks of four bits for each decimal digit within the number. Each decimal digit

is converted into its direct binary form (usually represented in 4-bits).

For example:

1. Convert (123)10 in BCD

From the truth table above,

1 -> 0001

2 -> 0010

3 -> 0011

thus, BCD becomes -> 0001 0010 0011

2. Convert (324)10 in BCD

(324)10 -> 0011 0010 0100 (BCD)

3 -> 0011

2 -> 0010

4 -> 0100

thus, BCD becomes -> 0011 0010 0100

Note:-

1. It is noticeable that the BCD is nothing more than a binary

representation of each digit of a decimal number.

2. It cannot be ignored that the BCD representation of the given decimal

number uses extra bits, which makes it heavy-weighted.

Gray Code

• The Gray Code is a sequence of binary number systems, which is also

known as reflected binary code. The reason for calling this code as

reflected binary code is the first N/2 values compared with those of the

last N/2 values in reverse order.

• In this code, two consecutive values are differed by one bit of binary

digits.

• Gray codes are used in the general sequence of hardware-generated

binary numbers.

• These numbers cause ambiguities or errors when the transition from

one number to its successive is done.

• This code simply solves this problem by changing only one bit when the

transition is between numbers is done.

• The gray code is a very light weighted code because it doesn't depend on

the value of the digit specified by the position. This code is also called a

cyclic variable code as the transition of one value to its successive value

carries a change of one bit only.

Decimal Number Binary Number Gray Code

0 0000 0000

1 0001 0001

2 0010 0011

3 0011 0010

4 0100 0110

5 0101 0111

6 0110 0101

7 0111 0100

8 1000 1100

9 1001 1101

10 1010 1111

11 1011 1110

12 1100 1010

13 1101 1011

14 1110 1001

15 1111 1000

Excess-3 Code

• The excess-3 code is also treated as XS-3 code. The excess-3 code is a

non-weighted and self-complementary BCD code used to represent the

decimal numbers.

• This code has a biased representation. This code plays an important role

in arithmetic operations because it resolves deficiencies encountered

when we use the BCD code for adding two decimal digits whose sum is

greater than 9.

• The Excess-3 code uses a special type of algorithm, which differs from

the binary positional number system or normal non-biased BCD.

• We can easily get an excess-3 code of a decimal number by simply

adding 3 to each decimal digit. And then we write the 4-bit binary

number for each digit of the decimal number.

The Excess-3 code for the decimal number is as follows:

Decimal Digit BCD Code Excess-3 Code

0 0000 0011

1 0001 0100

2 0010 0101

3 0011 0110

4 0100 0111

5 0101 1000

6 0110 1001

7 0111 1010

8 1000 1011

9 1001 1100

Note:-

In excess-3 code, the codes 1111 and 0000 are never used for any decimal

digit.

Example 1: (31)10

1) We find the BCD code of each digit of the decimal number.

Digit BCD

3 0011

1 0001

2) Then, we add 0011 in both of the BCD code.

Decimal BCD Excess-3

3 0011+0011 0110

1 0001+0011 0100

3) So, the excess-3 code of the decimal number 31 is 0110 0100

Example 2: (81.61)10

1. We find the BCD code of each digit of the decimal number.

Digit BCD

8 1000

1 0001

6 0110

1 0001

 Then, we add 0011 in both of the BCD code.

Decimal BCD Excess-3

8 1000+0011 1011

1 0001+0011 0100

6 0110+0011 1001

 So, the excess-3 code of the decimal number 81.61 is 1011 0100.1001 0100

Error Detection & Correction Codes

(Parity Code)

• The parity code is used for the purpose of detecting errors during the

transmission of binary information. The parity code is a bit that is

included with the binary data to be transmitted.

• The inclusion of a parity bit will make the number of 1’s either odd or

even.

Based on the number of 1’s in the transmitted data, the parity code is of two

types.

1. Even parity code - In even parity, the added parity bit will make the total

number of 1’s an even number.

2. Odd parity code - If the added parity bit make the total number of 1’s as

odd number, such parity code is said to be odd parity code.

The following table shows the some of the 4-bit messages to be transmitted

along with the parity bits. The bits in bold are the parity bits.

4-bit message Message with Odd parity Message with Even Parity

0000 00001 00000

0001 00010 00011

0010 00100 00101

0011 00111 00110

0100 01000 01001

0101 01011 01010

0110 01101 01100
0111 01110 01111

On the receiver side, if the received data is other than the sent data, then it is

an error. If the sent date is even parity code and the received data is odd

parity, then there is an error.

Hamming Code

• Hamming code is a block code that is capable of detecting up to two

simultaneous bit errors and correcting single-bit errors. It was developed

by R.W. Hamming for error correction.

• Hamming code is a set of error-correction codes that can be used

to detect and correct the errors that can occur when the data is moved

or stored from the sender to the receiver.

• In this coding method, the source encodes the message by inserting

redundant bits within the message. These redundant bits are extra bits

that are generated and inserted at specific positions in the message

itself to enable error detection and correction. When the destination

receives this message, it performs recalculations to detect errors and

find the bit position that has error.

• The number of redundant bits can be calculated using the following

formula:

2r ≥ m + r + 1

where, r = redundant bit, m = data bit

Encoding a message by Hamming Code:

The procedure used by the sender to encode the message encompasses the

following steps −

Step 1 − Calculation of the number of redundant bits.

If the message contains m number of data bits, r number of redundant

bits are added to it so that m𝑟 is able to indicate at least (m + r+ 1) different

states. Here, (m + r) indicates location of an error in each of (𝑚 + 𝑟) bit

positions and one additional state indicates no error. Since, r bits can indicate

2r states, 2r must be at least equal to (m + r + 1). Thus the following equation

should hold 2r ≥ m+r+1.

Step 2 – Positioning the redundant bits.

The r redundant bits placed at bit positions of powers of 2, i.e. 1, 2, 4, 8,

16 etc. They are referred in the rest of this text as r1 (at position 1), r2 (at

position 2), r3 (at position 4), r4 (at position 8) and so on.

Step 3 − Calculating the values of each redundant bit.

The redundant bits are parity bits. A parity bit is an extra bit that makes

the number of 1s either even or odd. The two types of parity are −

Even Parity − Here the total number of bits in the message is made even.

Odd Parity − Here the total number of bits in the message is made odd.

Each redundant bit, ri, is calculated as the parity, generally even parity, based

upon its bit position. It covers all bit positions whose binary representation

includes a 1 in the ith position except the position of ri.

Thus −

• r1 is the parity bit for all data bits in positions whose binary

representation includes a 1 in the least significant position excluding 1

(3, 5, 7, 9, 11 and so on)

• r2 is the parity bit for all data bits in positions whose binary

representation includes a 1 in the position 2 from right except 2 (3, 6, 7,

10, 11 and so on)

• r3 is the parity bit for all data bits in positions whose binary

representation includes a 1 in the position 3 from right except 4 (5-7, 12-

15, 20-23 and so on)

Once the redundant bits are embedded within the message, this is sent to the

user.

Decoding a message in Hamming Code:

Once the receiver gets an incoming message, it performs recalculations to

detect errors and correct them. The steps for recalculation are −

Step 1 − Calculation of the number of redundant bits

Using the same formula as in encoding, the number of redundant bits are

ascertained.

2r ≥ m + r + 1

where m is the number of data bits and r is the number of redundant bits.

Step 2 − Positioning the redundant bits

The r redundant bits placed at bit positions of powers of 2, i.e. 1, 2, 4, 8, 16 etc.

Step 3 − Parity checking

Parity bits are calculated based upon the data bits and the redundant bits using

the same rule as during generation of c1,c2 ,c3 ,c4 etc. Thus

c1 = parity(1, 3, 5, 7, 9, 11 and so on)

c2 = parity(2, 3, 6, 7, 10, 11 and so on)

c3 = parity(4-7, 12-15, 20-23 and so on)

Step 4 − Error detection and correction

The decimal equivalent of the parity bits binary values is calculated. If it is 0,

there is no error. Otherwise, the decimal value gives the bit position which has

error. For example, if c1c2c3c4 = 1001, it implies that the data bit at position 9,

decimal equivalent of 1001, has error. The bit is flipped to get the correct

message.

Example:

Suppose the data to be transmitted is 1011001, the bits will be placed as

follows:

Determining the Parity bits:

R1 bit is calculated using parity check at all the bits positions whose binary

representation includes a 1 in the least significant position. R1: bits 1, 3, 5, 7, 9,

11

 To find the redundant bit R1, we check for even parity. Since the total number

of 1’s in all the bit positions corresponding to R1 is an even number the value

of R1 (parity bit’s value) = 0

R2 bit is calculated using parity check at all the bits positions whose binary

representation includes a 1 in the second position from the least significant bit.

R2: bits 2,3,6,7,10,11

 To find the redundant bit R2, we check for even parity. Since the total number

of 1’s in all the bit positions corresponding to R2 is odd the value of R2(parity

bit’s value)=1

R4 bit is calculated using parity check at all the bits positions whose binary

representation includes a 1 in the third position from the least significant bit.

R4: bits 4, 5, 6, 7

 To find the redundant bit R4, we check for even parity. Since the total number

of 1’s in all the bit positions corresponding to R4 is odd the value of R4(parity

bit’s value) = 1

R8 bit is calculated using parity check at all the bits positions whose binary

representation includes a 1 in the fourth position from the least significant bit.

R8: bit

8,9,10,11

To find the redundant bit R8, we check for even parity. Since the total number

of 1’s in all the bit positions corresponding to R8 is an even number the value

of R8(parity bit’s value)=0. Thus, the data transferred is:

Error detection and correction: Suppose in the above example the 6th bit is

changed from 0 to 1 during data transmission, then it gives new parity values

in the binary number:

The bits give the binary number 0110 whose decimal representation is 6. Thus,

bit 6 contains an error. To correct the error the 6th bit is changed from 1 to 0.

