
 

 

Computer System Architecture 
UNIT I 

 

Number System 

The Number Systems used in computers are: 

• Binary number system 

• Octal number system 

• Decimal number system 

• Hexadecimal number system 

Binary number system 

• It has only two digits '0' and '1' so its base is 2. 

• Accordingly, In this number system, there are only two types of 
electronic pulses; absence of electronic pulse which represents '0'and 

presence of electronic pulse which represents '1'. 

• Each digit is called a bit. 

• A group of four bits (1101) is called a nibble and group of eight bits 

(11001010) is called a byte. The position of each digit in a binary number 

represents a specific power of the base (2) of the number system. 

Octal number system 

• It has eight digits (0, 1, 2, 3, 4, 5, 6, 7) so its base is 8. Each digit in an 

octal number represents a specific power of its base (8). 

• As there are only eight digits, three bits (23=8) of binary number system 

can convert any octal number into binary number. 

• This number system is also used to shorten long binary numbers. The 

three binary digits can be represented with a single octal digit. 

Decimal number system 

• This number system has ten digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) so its base is 

10.  

• In this number system, the maximum value of a digit is 9 and the 

minimum value of a digit is 0. 

• The position of each digit in decimal number represents a specific power 

of the base (10) of the number system. 



 

 

• This number system is widely used in our day-to-day life. It can 

represent any numeric value. 

Hexadecimal number system 

• This number system has 16 digits that ranges from 0 to 9 and A to F. So, 

its base is 16. The A to F alphabets represent 10 to 15 decimal numbers.  

• The position of each digit in a hexadecimal number represents a specific 

power of base (16) of the number system. 

• As there are only sixteen digits, four bits (24=16) of binary number 

system can convert any hexadecimal number into binary number. 

• It is also known as alphanumeric number system as it uses both numeric 

digits and alphabets. 

Binary Octal Decimal Hexadecimal 

0 0 0 0 
1 1 1 1 

10 2 2 2 
11 3 3 3 

100 4 4 4 
101 5 5 5 
110 6 6 6 
111 7 7 7 

1000 10 8 8 
1001 11 9 9 
1010 12 10 A 
1011 13 11 B 
1100 14 12 C 
1101 15 13 D 
1110 16 14 E 
1111 17 15 F 

10000 20 16 10 
10001 21 17 11 
10010 22 10 12 
10011 23 19 13 
10100 24 20 14 
10101 25 21 15 
10110 26 22 16 
10111 27 23 17 
11000 30 24 18 
11001 31 25 19 
11010 32 26 1A 



 

 

11011 33 27 1B 
11100 34 28 1C 
11101 35 29 1D 
11110 36 30 1E 

 

Fixed Point Representation 

• Fixed-point representation has a radix point known as decimal point. 

• Fixed-point numbers having decimal points at the right end of the 

number are treated as integers and the fixed-point numbers having 

decimal points at the left end of the number are treated as fractions. 

• In this method, the decimal point position is settled because the number 

saved in the memory is considered as an integer or as a fraction. 

• The binary numbers that are unsigned are continually considered as 

positive integers and are defined as 0s in the MSB. 

• The binary numbers that are registered contrast for negative numbers 

and are defined as 1s in the MSB. 

The magnitude of the signed binary numbers can be described using three 

methods are as follows − 

1. Sign and Magnitude Representation 

• In this method, the leftmost bit in the number is used for denoting the 

sign 

• 0 denotes a positive integer, and 1 denotes a negative integer. 

• The remaining bits in the number provide the magnitude of the number. 

• The range of values for the sign and magnitude representation is from    

-127 to 127. 

Example: (-2410) is defined as 10011000 

Note:-  The magnitude for both positive and negative values is equal, but they 

alter only with their signs. 

 

2. Signed 1’s Complement Representation 

• In this representation, a negative value is received by taking the 1’s 

complement of the equivalent positive number. 

• It can add a signed 1’s complement method creates end carry during 

arithmetic operation that cannot be rejected. 

• The range of values for the signed 1’s complement representation is 

from -127 to 128. 



 

 

Example: 

(29)10 = (00011101)2 = 0000111011’s complement for positive value 

-(29)10 = -(00011101)2 = 111100010 1’s complement for negative value 

3. Signed 2’s Complement Representation 

• In signed 2’s complement representation, the 2’s complement of a 

number is discovered by first creating the 1’s complement of that 

number, then incrementing the result by 1. 

• The range of values for the signed 2’s complement representation is 

from -128 to 127. 

Example: 

(29)10= (00011100)2 = (000011100)2’s1’s complement for positive value 

-(29)10 = -(00011100)2 = (11110010)2’s1’s complement for negative value 

 

1's Complement 

• The binary numbers can be easily converted into the 1's complement 

with the help of a simple algorithm. 

• According to this algorithm, if we toggle or invert all bits of a binary 

number, the generated binary number will become the 1's complement 

of that binary number. That means we have to transform 1 bit into the 0 

bit and 0 bit into the 1 bit in the 1's complement. 

• N' is used to indicate the 1's complement of a number. 

Example:   

1. 1's complement of binary number 5 (0101) is binary number 10 (1010)   

2. 1's complement of binary number 13 (1101) is binary number 2 (0010) 

2's Complement 

• The binary numbers can also be easily converted into the 2's 

complement with the help of a very simple algorithm. 

• According to this algorithm, we can get the 2's complement of a binary 

number by first inverting the given number. After that, we have to add 1 

into the LSB (least significant bit). That means we have to first perform 

1's complement of a number, and then we have to add 1 into that 

number to get the 2's complement. 



 

 

• N* is used to show the 2's complement of a number. 

Example: 

1. 2's complement of binary number 5 (0101) is binary number 11 (1011)   

2. 2's complement of binary number 13 (1101) is binary number 3 (0011)    

   

Difference between 1's Complement and 2's Complement: 

Parameters 1's complement 
2representation 

2's complement 
representation 

Process of 
Generation 

We can get the 1's 
complement of a given 
binary number by toggling 
or inverting all bits of that 
number. 

We can get the 2's 
complement of a given 
binary number by first 
doing 1's complement of 
number and then adding 1 
into that number. 

Example The 1's complement of 
binary number 9 (1001) is 6 
(0110). 

The 2's complement of 
binary number 9(1001) will 
be got by doing 1's 
complement of that 
number which is 6 (0110), 
and then adding 1 into it, 
which means 7 (0111). So 
the 2's complement of 9 
(1001) is 7 (0111). 

Logic Gates 
Used 

The implementation of 1's 
complement is very simple. 
For every bit of input, it 
basically uses the NOT gate. 

For every bit of input, the 
2's complement basically 
uses the NOT gate and a 
full adder. 

Number 
Representation 

If we want to represent the 
sign binary number, we can 
use the 1's. If we have a 
number 0, then it will not 
be possible to use it in the 
form of ambiguous 
representation. 

If we want to represent the 
sign binary number, we can 
also use the 2's. If we have 
a number 0, then it will 
possible to use it as an 
unambiguous 
representation of all given 
numbers. 

K-bits Register If there is a k-bit register, 
the 1's complement will use 
-(2(k-1) -1) to store the 
lowest negative number, 

If there is a k-bit register, 
the 2's complement will use 
-(2(k-1)) to store the lowest 
negative number and (2(k-1) -



 

 

and (2(k-1) -1) to store the 
largest positive number. 

1) to store the largest 
positive number. 

Representation 
of 0 

There are two ways to 
represent the number 0 in 
1's complement, i.e., +0 and 
-0. The plus 0 will be 
represented as 00000000, 
which is positive zero (+0) in 
an 8-bit register, and for 
negative zero (-0), it will be 
represented as 11111111 in 
an 8-bit register. 

There is only one way to 
represent the number 0 in 
2's complement for both +0 
and -0. Both minus 0 or plus 
0 can be represented as 
0000000 (+0) in an 8-bit 
register because if we add 1 
to 11111111 (-1), we will 
get 00000000 (+0), which is 
the same as positive zero. 
That's why the number 0 is 
always considered as a 
positive in the 2's 
complement. This is also 
the reason we generally use 
2's complement. 

Sign Extension In the 1's complement, sign 
extension is used to convert 
the given sign into another 
sign for any signed integer. 

The working of sign 
extension in 2's 
complement and in 1's 
complement is the same. 
Here it also converts a given 
sign into another sign for 
any signed integer. 

Ease of 
operation 

The 1's complement always 
requires the addition of 
end-around-carry-bit. That's 
why the 1's complement 
arithmetic operation is 
difficult as compared to the 
2's complement arithmetic 
operation. 

The 2's complement does 
not require the addition of 
end-around-carry-bit. That's 
why the 2's complement 
arithmetic operation is 
easier as compared to the 
1's complement arithmetic 
operation. 

 

Arithmetic Operations of Binary Numbers 

Binary is a base-2 number system that uses two states 0 and 1 to represent a 

number. We can also call it to be a true state and a false state. A binary 

number is built the same way as we build the normal decimal number.  



 

 

Binary arithmetic is an essential part of various digital systems. You can add, 

subtract, multiply, and divide binary numbers using various methods. These 

operations are much easier than decimal number arithmetic operations 

because the binary system has only two digits: 0 and 1.  

Binary additions and subtractions are performed as same in decimal additions 

and subtractions. When we perform binary additions, there will be two 

outputs: Sum (S) and Carry (C).  

1. There are four rules for binary addition:  

 

2. There are four rules for binary subtraction:  

 

Borrow 1 is required from the next higher order bit to subtract 1 from 0. So, 

the result became 0.  

3. There are four rules for binary multiplication:  



 

 

  

Multiplication is always 0, whenever at least one input is 0.  

4. There are four parts in any division: Dividend, Divisor, quotient, and 

remainder.  

  

The result is always not defined, whenever the divisor is 0. 

ASCII Codes 

• ASCII (American Standard Code for Information Interchange) is the most 

common character encoding format for text data in computers and on 

the internet. 

• In standard ASCII-encoded data, there are unique values for 128 

alphabetic, numeric or special additional characters and control codes. 

• ASCII encoding is based on character encoding used for telegraph data. 

The American National Standards Institute first published it as a 

standard for computing in 1963. 



 

 

• Characters in ASCII encoding include upper- and lowercase letters A 

through Z, numerals 0 through 9 and basic punctuation symbols. It also 

uses some non-printing control characters that were originally intended 

for use with teletype printing terminals. 

• In total, there are 256 ASCII characters, and can be broadly divided into 

three categories:  

➢ ASCII control characters (0-31 and 127) 

➢ ASCII printable characters (32-126) (most commonly referred) 

➢ Extended ASCII characters (128-255) 

Below are the ASCII values of printable characters (33, 126): 

Chara

cter 

Charac

ter 

Name 

AS

CII 

co

de   

Chara

cter 

Chara

cter 

Name 

AS

CII 

co

de   

Chara

cter 

Chara

cter 

Name 

AS

CII 

co

de 

! 

Exclam
ation 

point 33   A 

Upperc

ase a 65   a 

Lower

case a 97 

“ 

Double 

quotati

on 34   B 

Upperc

ase b 66   b 

Lower

case b 98 

# 

Numbe

r sign 35   C 

Upperc

ase c 67   c 

Lower

case c 99 

$ 

Dollar 

sign 36   D 

Upperc

ase d 68   d 

Lower

case d 100 

% 

Percent 

sign 37   E 

Upperc

ase e 69   e 

Lower

case e 101 

& 

ampers

and 38   F 

Upperc

ase f 70   f 

Lower

case f 102 



 

 

Chara

cter 

Charac

ter 

Name 

AS

CII 

co

de   

Chara

cter 

Chara

cter 

Name 

AS

CII 

co

de   

Chara

cter 

Chara

cter 

Name 

AS

CII 

co

de 

‘ 

apostro

phe 39   G 

Upperc

ase g 71   g 

Lower

case g 103 

( 

Left 

parent

hesis 40   H 

Upperc

ase h 72   h 

Lower

case h 104 

) 

Right 

parent
hesis 41   I 

Upperc
ase i 73   i 

Lower
case i 105 

* asterisk 42   J 
Upperc
ase j 74   j 

Lower
case j 106 

+ 
Plus 
sign 43   K 

Upperc
ase k 75   k 

Lower
case k 107 

, comma 44   L 
Upperc
ase l 76   l 

Lower
case l 108 

– hyphen 45   M 

Upperc

ase m 77   m 

Lower

case m 109 

. period 46   N 

Upperc

ase n 78   n 

Lower

case n 110 

/ slash 47   O 

Upperc

ase o 79   o 

Lower

case o 111 



 

 

Chara

cter 

Charac

ter 

Name 

AS

CII 

co

de   

Chara

cter 

Chara

cter 

Name 

AS

CII 

co

de   

Chara

cter 

Chara

cter 

Name 

AS

CII 

co

de 

0 zero 48   P 

Upperc

ase p 80   p 

Lower

case p 112 

1 one 49   Q 

Upperc

ase q 81   q 

Lower

case q 113 

2 two 50   R 

Upperc

ase r 82   r 

Lower

case r 114 

3 three 51   S 

upperc

ases 83   s 

Lower

case s 115 

4 four 52   T 
Upperc
ase t 84   t 

Lower
case t 116 

5 five 53   U 
Upperc
ase u 85   u 

Lower
case u 117 

6 six 54   V 
Upperc
ase v 86   v 

Lower
case v 118 

7 seven 55   W 
Upperc
ase w 87   w 

Lower
case w 119 

8 eight 56   X 

Upperc

ase x 88   x 

Lower

case x 120 

9 nine 57   Y 

Upperc

ase y 89   y 

Lower

case y 121 



 

 

Chara

cter 

Charac

ter 

Name 

AS

CII 

co

de   

Chara

cter 

Chara

cter 

Name 

AS

CII 

co

de   

Chara

cter 

Chara

cter 

Name 

AS

CII 

co

de 

: colon 58   Z 

Upperc

ase z 90   z 

Lower

case z 122 

; 
semi-
colon 59   [ 

Left 

square 

bracke
t 91   { 

Left 

curly 
brace 123 

< 

Less-
than 

sign 60   \ 

backsla

sh 92   | 

Vertica

l bar 124 

= 

Equals 

sign 61   ] 

Right 

square 
bracke

t 93   } 

Right 
curly 

brace 125 

> 

Greater

-than 

sign 62   ^ caret 94   ~ tilde 126 

? 

Questio

n mark 63   _ 

unders

core 95         

@ At sign 64   ` 

Grave 

accent 96       
 

 

 

 

 



 

 

EBCDIC codes 

• Extended binary coded decimal interchange code (EBCDIC) is an 8-bit 

binary code for numeric and alphanumeric characters. 

• It was developed and used by IBM. It is a coding representation in which 

symbols, letters and numbers are presented in binary language. 

 

BCD or Binary Coded Decimal 

• Binary Coded Decimal, or BCD, is another process for converting decimal 

numbers into their binary equivalents.  

• It is a form of binary encoding where each digit in a decimal number is 

represented in the form of bits. 

• This encoding can be done in either 4-bit or 8-bit (usually 4-bit is 

preferred). 

• It is a fast and efficient system that converts the decimal numbers into 

binary numbers as compared to the existing binary system. 

• These are generally used in digital displays where the manipulation of 

data is quite a task. 

• Thus BCD plays an important role here because the manipulation is done 

treating each digit as a separate single sub-circuit. 

• The BCD equivalent of a decimal number is written by replacing each 

decimal digit in the integer and fractional parts with its 4-bit binary 

equivalent. 

• The BCD code is more precisely known as 8421 BCD code  , with 8,4,2 

and 1 representing the weights of different bits in the four-bit groups, 

Starting from MSB and proceeding towards LSB. This feature makes it a 

weighted code , which means that each bit in the 4-bit group 

representing a given decimal digit has an assigned weight. 

 

DECIMAL 
NUMBER 

BCD DECIMAL 
NUMBER 

BCD 

0 0000 8 1000 
1 0001 9 1001 
2 0010 10 0001 0000 
3 0011 11 0001 0001 
4 0100 12 0001 0010 
5 0101 13 0001 0011 



 

 

6 0110 14 0001 0100 
7 0111 15 0001 0101 
16 0001 0110 21 0010 0001  
17 0001 0111 22 0010 0010 
18 0001 1000 23 0010 0011 
19 0001 1001 24 0010 0100 
20 0010 0000 25 0010 0101 

 

In the BCD numbering system, the given decimal number is segregated into 

chunks of four bits for each decimal digit within the number. Each decimal digit 

is converted into its direct binary form (usually represented in 4-bits).  

For example:  

1. Convert (123)10 in BCD  

From the truth table above,  

1 -> 0001  

2 -> 0010  

3 -> 0011  

thus, BCD becomes -> 0001 0010 0011  

2. Convert (324)10 in BCD  

(324)10 -> 0011 0010 0100 (BCD)  

3 -> 0011  

2 -> 0010  

4 -> 0100  

thus, BCD becomes -> 0011 0010 0100  

 

Note:-   

1. It is noticeable that the BCD is nothing more than a binary 

representation of each digit of a decimal number. 

2. It cannot be ignored that the BCD representation of the given decimal 

number uses extra bits, which makes it heavy-weighted. 

 

Gray Code 

• The Gray Code is a sequence of binary number systems, which is also 

known as reflected binary code. The reason for calling this code as 



 

 

reflected binary code is the first N/2 values compared with those of the 

last N/2 values in reverse order. 

• In this code, two consecutive values are differed by one bit of binary 

digits. 

• Gray codes are used in the general sequence of hardware-generated 

binary numbers. 

• These numbers cause ambiguities or errors when the transition from 

one number to its successive is done. 

• This code simply solves this problem by changing only one bit when the 

transition is between numbers is done. 

• The gray code is a very light weighted code because it doesn't depend on 

the value of the digit specified by the position. This code is also called a 

cyclic variable code as the transition of one value to its successive value 

carries a change of one bit only. 

Decimal Number Binary Number Gray Code 

0 0000 0000 

1 0001 0001 

2 0010 0011 

3 0011 0010 

4 0100 0110 

5 0101 0111 

6 0110 0101 

7 0111 0100 

8 1000 1100 

9 1001 1101 

10 1010 1111 

11 1011 1110 

12 1100 1010 

13 1101 1011 

14 1110 1001 

15 1111 1000 

 

 



 

 

Excess-3 Code 

• The excess-3 code is also treated as XS-3 code. The excess-3 code is a 

non-weighted and self-complementary BCD code used to represent the 

decimal numbers. 

• This code has a biased representation. This code plays an important role 

in arithmetic operations because it resolves deficiencies encountered 

when we use the BCD code for adding two decimal digits whose sum is 

greater than 9. 

•  The Excess-3 code uses a special type of algorithm, which differs from 

the binary positional number system or normal non-biased BCD. 

• We can easily get an excess-3 code of a decimal number by simply 

adding 3 to each decimal digit. And then we write the 4-bit binary 

number for each digit of the decimal number.  

The Excess-3 code for the decimal number is as follows: 

Decimal Digit BCD Code Excess-3 Code 

0 0000 0011 

1 0001 0100 

2 0010 0101 

3 0011 0110 

4 0100 0111 

5 0101 1000 

6 0110 1001 

7 0111 1010 

8 1000 1011 

9 1001 1100 

 

Note:-   

In excess-3 code, the codes 1111 and 0000 are never used for any decimal 

digit.  

Example 1: (31)10 

1) We find the BCD code of each digit of the decimal number. 



 

 

Digit BCD 

3 0011 

1 0001 

 

2) Then, we add 0011 in both of the BCD code. 

Decimal BCD Excess-3 

3 0011+0011 0110 

1 0001+0011 0100 

 

3) So, the excess-3 code of the decimal number 31 is 0110 0100 

Example 2: (81.61)10 

1. We find the BCD code of each digit of the decimal number. 

Digit BCD 

8 1000 

1 0001 

6 0110 

1 0001 

 

 Then, we add 0011 in both of the BCD code. 

Decimal BCD Excess-3 

8 1000+0011 1011 

1 0001+0011 0100 

6 0110+0011 1001 

 So, the excess-3 code of the decimal number 81.61 is 1011 0100.1001 0100 

 

 

 



 

 

Error Detection & Correction Codes 

(Parity Code) 

• The parity code is used for the purpose of detecting errors during the 

transmission of binary information. The parity code is a bit that is 

included with the binary data to be transmitted. 

• The inclusion of a parity bit will make the number of 1’s either odd or 

even. 

Based on the number of 1’s in the transmitted data, the parity code is of two 

types. 

1. Even parity code - In even parity, the added parity bit will make the total 

number of 1’s an even number. 

2. Odd parity code - If the added parity bit make the total number of 1’s as 

odd number, such parity code is said to be odd parity code. 

 
 

The following table shows the some of the 4-bit messages to be transmitted 

along with the parity bits. The bits in bold are the parity bits. 

4-bit message Message with Odd parity Message with Even Parity 

0000 00001 00000 

0001 00010 00011 

0010 00100 00101 

0011 00111 00110 

0100 01000 01001 

0101 01011 01010 

0110 01101 01100 
0111 01110 01111 



 

 

On the receiver side, if the received data is other than the sent data, then it is 

an error. If the sent date is even parity code and the received data is odd 

parity, then there is an error. 

 

Hamming Code 

• Hamming code is a block code that is capable of detecting up to two 

simultaneous bit errors and correcting single-bit errors. It was developed 

by R.W. Hamming for error correction. 

• Hamming code is a set of error-correction codes that can be used 

to detect and correct the errors that can occur when the data is moved 

or stored from the sender to the receiver. 

• In this coding method, the source encodes the message by inserting 

redundant bits within the message. These redundant bits are extra bits 

that are generated and inserted at specific positions in the message 

itself to enable error detection and correction. When the destination 

receives this message, it performs recalculations to detect errors and 

find the bit position that has error. 

• The number of redundant bits can be calculated using the following 

formula: 

2r ≥ m + r + 1 

where, r = redundant bit, m = data bit 

 

Encoding a message by Hamming Code: 

The procedure used by the sender to encode the message encompasses the 

following steps − 

Step 1 − Calculation of the number of redundant bits. 

If the message contains m number of data bits, r number of redundant 

bits are added to it so that m𝑟 is able to indicate at least (m + r+ 1) different 

states. Here, (m + r) indicates location of an error in each of (𝑚 + 𝑟) bit 

positions and one additional state indicates no error. Since, r bits can indicate 



 

 

2r states, 2r must be at least equal to (m + r + 1). Thus the following equation 

should hold  2r ≥ m+r+1. 

Step 2 – Positioning the redundant bits. 

The r redundant bits placed at bit positions of powers of 2, i.e. 1, 2, 4, 8, 

16 etc. They are referred in the rest of this text as r1 (at position 1), r2 (at 

position 2), r3 (at position 4), r4 (at position 8) and so on. 

 

Step 3 − Calculating the values of each redundant bit. 

The redundant bits are parity bits. A parity bit is an extra bit that makes 

the number of 1s either even or odd. The two types of parity are − 

Even Parity − Here the total number of bits in the message is made even. 

Odd Parity − Here the total number of bits in the message is made odd. 

Each redundant bit, ri, is calculated as the parity, generally even parity, based 

upon its bit position. It covers all bit positions whose binary representation 

includes a 1 in the ith position except the position of ri. 

Thus − 

• r1 is the parity bit for all data bits in positions whose binary 

representation includes a 1 in the least significant position excluding 1 

(3, 5, 7, 9, 11 and so on) 

• r2 is the parity bit for all data bits in positions whose binary 

representation includes a 1 in the position 2 from right except 2 (3, 6, 7, 

10, 11 and so on) 

• r3 is the parity bit for all data bits in positions whose binary 

representation includes a 1 in the position 3 from right except 4 (5-7, 12-

15, 20-23 and so on) 

Once the redundant bits are embedded within the message, this is sent to the 

user. 

Decoding a message in Hamming Code: 



 

 

Once the receiver gets an incoming message, it performs recalculations to 

detect errors and correct them. The steps for recalculation are − 

Step 1 − Calculation of the number of redundant bits 

Using the same formula as in encoding, the number of redundant bits are 

ascertained. 

2r ≥ m + r + 1 

where m is the number of data bits and r is the number of redundant bits. 

Step 2 − Positioning the redundant bits 

The r redundant bits placed at bit positions of powers of 2, i.e. 1, 2, 4, 8, 16 etc. 

Step 3 − Parity checking 

Parity bits are calculated based upon the data bits and the redundant bits using 

the same rule as during generation of c1,c2 ,c3 ,c4 etc. Thus 

c1 = parity(1, 3, 5, 7, 9, 11 and so on) 

c2 = parity(2, 3, 6, 7, 10, 11 and so on) 

c3 = parity(4-7, 12-15, 20-23 and so on) 

Step 4 − Error detection and correction 

The decimal equivalent of the parity bits binary values is calculated. If it is 0, 

there is no error. Otherwise, the decimal value gives the bit position which has 

error. For example, if c1c2c3c4 = 1001, it implies that the data bit at position 9, 

decimal equivalent of 1001, has error. The bit is flipped to get the correct 

message. 

Example: 

Suppose the data to be transmitted is 1011001, the bits will be placed as 

follows: 

 

Determining the Parity bits: 

R1 bit is calculated using parity check at all the bits positions whose binary 

representation includes a 1 in the least significant position. R1: bits 1, 3, 5, 7, 9, 

11  



 

 

 

 To find the redundant bit R1, we check for even parity. Since the total number 

of 1’s in all the bit positions corresponding to R1 is an even number the value 

of R1 (parity bit’s value) = 0 

R2 bit is calculated using parity check at all the bits positions whose binary 

representation includes a 1 in the second position from the least significant bit. 

R2: bits 2,3,6,7,10,11  

 

 To find the redundant bit R2, we check for even parity. Since the total number 

of 1’s in all the bit positions corresponding to R2 is odd the value of R2(parity 

bit’s value)=1 

R4 bit is calculated using parity check at all the bits positions whose binary 

representation includes a 1 in the third position from the least significant bit. 

R4: bits 4, 5, 6, 7  



 

 

 

  

 To find the redundant bit R4, we check for even parity. Since the total number 

of 1’s in all the bit positions corresponding to R4 is odd the value of R4(parity 

bit’s value) = 1 

R8 bit is calculated using parity check at all the bits positions whose binary 

representation includes a 1 in the fourth position from the least significant bit. 

R8: bit 

8,9,10,11 

  

To find the redundant bit R8, we check for even parity. Since the total number 

of 1’s in all the bit positions corresponding to R8 is an even number the value 

of R8(parity bit’s value)=0. Thus, the data transferred is: 

 

Error detection and correction: Suppose in the above example the 6th bit is 

changed from 0 to 1 during data transmission, then it gives new parity values 

in the binary number:  



 

 

 

The bits give the binary number 0110 whose decimal representation is 6. Thus, 

bit 6 contains an error. To correct the error the 6th bit is changed from 1 to 0. 


